pasión por la robótica en Argentina

[PRINCIPAL] [ROBOTS DIDACTICOS] [NOSOTROS] [ACTIVIDAD] [NOTICIAS] [ARTICULOS] [GALERIA] [ENLACES] [CONTACTO]


Sensores - Magnetismo
Descripción y funcionamiento
por Eduardo J. Carletti

Información completa sobre -> Sensores para Robots

Sensores de Magnetismo - Introducción

En robótica, algunas situaciones de medición del entorno pueden requerir del uso de elementos de detección sensibles a los campos magnéticos. En principio, si nuestro robot debe moverse en ambientes externos a un laboratorio, una aplicación importante es una brújula que forme parte de un sistema de orientación para nuestro robot. Otra aplicación es la medición directa de campos magnéticos presentes en las inmediaciones, que podrían volverse peligrosos para el "cerebro" de nuestro robot si su intensidad es importante. Una tercera aplicación es la medición de sobrecorrientes en la parte motriz (detectando la intensidad del campo magnético que genera un conductor en la fuente de alimentación). También se podrán encontrar sensores magnéticos en la medición de movimientos, como el uso de detectores de "cero movimiento" y tacómetros basados en sensores por efecto Hall o pickups magnéticos.

Pickups magnéticos (sensores inductivos)

Entre los sensores de proximidad industriales de uso frecuente se encuentran los sensores basados en un cambio de inductancia debido a la cercanía de un objeto metálico.

La figura muestra el esquema de un sensor inductivo o "pickup magnético", que consiste en una bobina devanada sobre un imán permanente, ambos insertos en un receptáculo o cápsula de soporte.

Si se coloca el núcleo del sensor en proximidad de un material ferromagnético, se produce un cambio en la posición de las líneas de flujo del imán permanente. En condiciones estáticas, no hay movimiento en las líneas de flujo y, por consiguiente, no se induce corriente en la bobina. Sin embargo, cuando un objeto ferromagnético ingresa en el campo del imán y/o lo abandona, el cambio que resulta en las líneas de flujo induce un impulso de corriente, cuya amplitud y forma son proporcionales a la velocidad de cambio del flujo.

La tensión que se mide sobre la bobina varía como función de la velocidad a la que se introduce el material ferromagnético en el campo del imán. La polaridad de la tensión depende de que el objeto esté ingresando en el campo o abandonándolo.

También existe una relación entre la amplitud de la tensión y la distancia sensor-objeto. La sensibilidad cae rápidamente al aumentar la distancia. El sensor es eficaz a un milímetro o menos.

Sensores por "Efecto Hall"

En el mercado existe gran cantidad de sensores industriales para diversos usos, basados en el efecto que descubrió el científico Edwin Herbert Hall. El nombre de Hall, físico norteamericano, ha pasado a la posteridad debido a una singularidad electromagnética que descubrió por causalidad en el curso de un montaje eléctrico: el "Efecto Hall".

Cuando por una placa metálica circula una corriente eléctrica y ésta se halla situada en un campo magnético perpendicular a la dirección de la corriente, se desarrolla en la placa un campo eléctrico transversal, es decir, perpendicular al sentido de la corriente. Este campo, denominado Campo de Hall, es la resultante de fuerzas ejercidas por el campo magnético sobre las partículas de la corriente eléctrica, sean positivas o negativas.

Este fenómeno tiene dos consecuencias principales. La primera es que la acumulación de cargas en un lado de la placa, en el campo así creado, implica que el otro lado tiene una carga opuesta, creándose entonces una diferencia de potencial; la segunda es que la carga positiva posee un potencial superior al de la carga negativa. La medida del potencial permite, por tanto, determinar si se trata de un campo positivo o negativo.

En la mayor parte de los metales, la carga es negativa, pero en algunos metales como el hierro, el zinc, el berilio y el cadmio es positiva, y en los semiconductores es positiva y negativa al mismo tiempo. Hay una desigualdad entre los intercambios negativos y los positivos; también en este caso, la medida del potencial permite saber cuál domina, el positivo o el negativo.

Los sensores basados en efecto Hall suelen constar de un elemento conductor o semiconductor y un imán. Cuando un objeto ferromagnético se aproxima al sensor, el campo que provoca el imán en el elemento se debilita. Así se puede determinar la proximidad de un objeto, siempre que sea ferromagnético.

Aplicaciones de sensores por efecto Hall

Una de las aplicaciones de los sensores por efecto Hall que más se ha instalado en la industria, en especial en la automotriz, es como reemplazo del sensor inductivo o pickup magnético que describimos más arriba (basado en un imán permanente y una bobina). Dado que en este caso el sensor, por estar implementado por un semiconductor, tiene la capacidad de poseer electrónica integrada, la señal que sale de los sensores por efecto Hall para uso como detectores de proximidad por lo general ya está amplificada y condicionada, de modo que su utilización es mucho más directa, fácil y económica.

Otra aplicación es la medición de la corriente que circula por un conductor, con lo que se pueden implementar medidores de seguridad sin necesidad de insertarlos en el circuito eléctrico de un sistema donde se maneja potencia. Los sensores pueden estar construidos en una cápsula de tipo circuito integrado o una de transistor

Transistor: Dispositivo electrónico de material semiconductor (germanio, silicio) capaz de controlar una corriente eléctrica, amplificándola y/o conmutándola. Posee tres conexiones: Colector, Emisor y Base.

, o también pueden tener una carcaza con un orificio por el que pasará el cable cuya corriente se va a medir.

Se utilizan también chips por efecto Hall como interruptores accionados por el campo magnético de un imán. Un caso concreto es en los sensores de los sistemas de alarma (aquellos que se colocan en puertas y ventanas, para detectar su apertura). Estos interruptores tienen la ventaja de no sufrir fricción al ser accionados, ya que el único elemento que toma contacto es el campo magnético. Son utilizados en teclados de alta eficiencia, y estos mismos interruptores se pueden usar como sensores de choque (contacto físico), posición de un mecanismo, cuentavueltas, límite de carrera y otras detecciones mecánicas dentro y en el exterior de un robot.


UGN3503 - Sensor de Efecto Hall lineal, Radiométrico

El UGN3503, disponible en varias cápsulas de tipo transistor

Transistor: Dispositivo electrónico de material semiconductor (germanio, silicio) capaz de controlar una corriente eléctrica, amplificándola y/o conmutándola. Posee tres conexiones: Colector, Emisor y Base.

, puede detectar con precisión pequeños cambios en la densidad de un flujo magnético, incluso aquellos demasiado débiles como para actuar sobre interruptores de efecto Hall. Tiene sólo tres conexiones, que son la alimentación (4,5 a 6 V), el común o tierra, y la salida. Si no hay campo magnético aplicado, la tensión en la salida es de la mitad del voltaje de alimentación. Si se acerca al sensor el polo sur de un elemento magnetizado, la tensión de salida sube. Si se acerca el polo norte, en cambio, el voltaje de salida de disminuye. En Buenos Aires, Argentina, está disponible en Electrocomponentes

Hoja de datos UGN3503


UGN3113 - UGN3119 Interruptores de Efecto Hall

En GM Electrónica (Buenos Aires, Argentina) se obtiene el UGN3113, un interruptor con salida de colector abierto, que posee un regulador de voltaje incorporado, de modo que el componente se puede alimentar con tensiones entre 4,5 a 24 volts. La salida es compatible con lógica TTL y CMOS. Este interruptor magnético está disponible en cápsulas SOT89 (de montaje superficial) y en cápsulas de tres patas, tipo transistor

Transistor: Dispositivo electrónico de material semiconductor (germanio, silicio) capaz de controlar una corriente eléctrica, amplificándola y/o conmutándola. Posee tres conexiones: Colector, Emisor y Base.

. Tiene una sensibilidad de 50 a 450 G. El UGN3119 tiene las mismas características excepto que su sensibilidad es de 125 a 500 G.

Hoja de datos UGN3113 - UGN3119


Módulo CMPS03 de brújula

Para agregar orientación geográfica a nuestro robot, podemos utilizar el módulo CMPS03 de Devantech, que determina un ángulo respecto al campo magnético de la Tierra. Este módulo es una plaqueta de 26 x 28 mm que utiliza dos sensores de campo magnético KMZ51 de Philips, suficientemente sensibles como para detectar el campo magnético terrestre. Tiene una resolución de 0,1 grados y una precisión de 3 a 4 grados. Se puede conectar con facilidad a un microcontrolador, utilizando una interfaz I2C. También tiene una salida en la que indica el ángulo con un pulso de ancho modulado.

Hoja de datos CMPS03


 
Grupo de Robots Didácticos
Grupo Cerrado - 12.842 miembros
Unirte al grupo
Este grupo es creado para compartir proyectos, debatir y publicar sobre los temas tratados en las páginas Robots Didácticos y https://robots-argentina.com.ar. Responda las preguntas al inscribirse, por favor
 

© 2007, 2022 Robots Argentina - Contacto: ecarletti@robots-argentina.com.ar